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Abstract

In this paper, we introduce a system to construct a hierarchical 3D scene graph from
dense mapping for high-level planning incrementally in real time. The proposed sys-
tem leverages both the geometric information and hierarchical space structure of the
environment and rich inter-objects semantic relationships. Besides, we demonstrate
the idea of aggregation of semantic information by predicting the room class from
the contained objects. Finally, we evaluate this system with our own multi-room
environment, generated by photo-realistic simulator.



Chapter 1

Introduction

The progress of SLAM-based environment reconstruction, learning-based environ-
ment understanding and capability of robots’ sensing and computation in recent
years draws much attention to the understanding and high-level planning ability of
robots in complex indoor environment, in both robotics community and computer
vision community. In this scenario, the term Embodied Artificial Intelligence [I]
is proposed to refer to those tasks involving vision, languages, actions and control
with embodied robots running in either real world or virtual environment. Many
Embodied AT tasks, including Embodied Question Answering [2], Visual Navigation
[B], Visual Language Navigation [4], have become hot research topics in interdisci-
plinary communities.

One critical problem in embodied AI is how to learn and represent environment
knowledge, including unary and binary, geometric and semantic, transient and long-
term information about the environment. Thanks to the strong expressiveness of
graph data structure and the recent success of Graph Convolutional Networks [5]
in many fields, more and more work focus to extract 3D scene graphs from indoor
environment [6][7][8][9]. Previous works either focused on the geometric information
and layered structure of the environment, or only on the semantic relationships
extracted by learning-based models. Besides, most of them build the 3D scene graph
after the semantic mesh is constructed, by offline analysis. In this paper, we present
a system to extract both hierarchical 3D scene graph with 1) Inter-objects semantic
relationships, predicted from object point clouds 2) room segmentation, generated
from TSDF voxels 3) room class, predicted from objects in rooms. Finally, we
evaluate our system on a multi-room scene generated from photo-realistic simulator
and discuss its possible usage in high-level planning tasks.



Chapter 2

Related Works

Scene Graph [10], defined as "a structured representation of a scene that can
clearly express the objects, attributes, and relationships between objects in the
scene” in a recent survey paper [I1], are a popular representation in many Vision-
Language multimodal tasks. In Visual Question Answering (VQA), given an image
and several questions concerning the scene in image, the model is expected to an-
swer a question written in natural language. Many previous works [12] [13] [14]
try to perform explicit reasoning on the scene graph with detected objects as graph
nodes. In Visual Dialogue Generation, this work [I5] present a dynamic scene graph
representation learning pipeline that consists of an intra-frame reasoning layer and
an inter-frame aggregation module capturing temporal cues to generate meaningful
dialogue.

3D Scene Graph [7], instead of describing a scene or an event described by a
2D image or a segment of video, a 3D scene graph describes an environment (
usually indoor ) including objects, properties, inter-object relations. Transferring
from 2D data, such as images and videos, to 3D data like RGBD point clouds and
reconstructed meshes from SLAM-based dense mapping, many works [6][L6][8] nat-
urally try to use end-to-end deep neural models to predict the 3D scene graph, as
end-to-end models have achieved great success in 2D data. While [I6] focuses on
detecting objects and predicting inter-objects relations from the video clip of ex-
ploring indoor environment, [§] predicts object class and inter-objects relations on
segmented RGB point clouds, generated by SLAM-based dense mapping. Due to
the poor performance of end-to-end models, some other works [7][9] combine the
automated pipeline to gather geometric information and create ground-truth an-
notations on semantic information including properties and inter-objects relations
by human labor. [9] also proposes a ”full-stack solution” to indoor environment
understanding, which incorporates state-of-the-art SLAM framework Kimera [I7],
with pose graph estimation module, to provide low-level visual information. Then
the following pipelines performs offline processing to extract semantic information
from dense reconstruction, including object classes, properties, inter-object rela-
tionships, places and structures of the room, etc. These works construct 3D scene
graph by data analysis, after the SLAM-based dense mapping finishes and overall
environment reconstruction is ready. Instead, our proposed system focuses on 3D
scene graph construction in the real time.

There are also some works already trying to utilize 3D scene graph as explicit
knowledge representation to help finish high-level planning tasks in the environment.
[18] proposes to use a 3D scene graph representation to help robots look for objects
in indoor environment.



Chapter 3

Method

In this chapter, we firstly present the overall pipeline to generate the hierarchical
3D scene graph, and then give a detailed description of our target 3D scene graph,
followed by detailed explanations of each of the module in the system. Figure [3.1]
gives the overview of the proposed pipeline.
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Figure 3.1: Overview of the pipeline to generate hierarchical 3D scene graph

As can be seen in figure 3.1} taking a stream of RGBD images and semantic segmen-
tations as input, the dense semantic mapper (blue box at the bottom) reconstruct
the colored mesh and mesh segmentation using TSDF-based method [19]. On top
of this dense mapping pipeline, we introduce three extra modules to extract the
3D scene graph: 1) Inter-object Relationships Prediction Module 2) Room Volume
Segmentation Module 3) Room Class Prediction Module, visualized as green boxes
in the middle of figure These three modules take into point clouds of objects
and voxels of 3D free space as input, and generate the hierarchical 3D scene graph
as depicted on the top of figure 3.1]
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3.1 Hierarchical 3D Scene Graph

Our hierarchical 3D scene graph consists of two layers: 1) object layer 2) room
layer. With RGB point clouds of object and voxels of free space mapping gener-
ated from the provided exterior dense mapper, the system generates 1) inter-object
relationships 2) room segmentation in voxels 3) room class labels. The demo result
on a two-room flat is shown in figure

fn /. Lounge_1

(c) Inter-objects relations (d) 3D Room Segmentation

Figure 3.2: Visualization: Generated hierarchical 3D scene graph

In figure we only visualize the backbone of the 3D scene graph:

e Object nodes: Green cubes. The position of each cube represents the centroid
of point clouds of the corresponding object.

e Room nodes: Colored cubes over green cubes. The position of each cube
represents the centroid of free space voxels belonging to the room.

e "Is in” relationships: Colored edges that connect all object nodes to one of
the room nodes.

These three elements represent the natural spatial hierarchy of ”something is in
some place”.

Figure |3.2¢| only shows the semantic relationships between objects in the environ-
ment, with different colors representing different semantic labels.

Figure visualizes the free space voxels segmented to room space. The grid of
spheres are the centers of free space voxels. Each voxel belongs to the room node
with the same color.
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3.2 Inter-object Relationships Prediction

This module takes point clouds of objects as input, provided by the dense seman-
tic mapper, and generate inter-object relationships. We notate the input object
RGB point clouds as P = {Py, Py,--+ , P;,--- , Py}, where P; € R¥iX6 represents
K; points of i-th object. Each point is a vector of shape p] = [x],y],z],r],g],b]],
where [:Ef , yi , zf | are the coordinates of the point, and [rﬁ , gf , b{ | are the color val-
ues in RGB color space. Then the vertex normal of each point is calculated by
finding adjacent points and calculating the principal axis of the adjacent points
using covariance analysis. The adjacent points of the target point are searched
in a sphere of radius=0.1, with the target point at the center. We concatenate es-
timated vertex normals and original point clouds as the processed point clouds, P’ =

Y / / Kix9 '3 100 2F o0 pd 0 3T ond 0T o]
{PlaPQat"7Pi7"'aPN}aWherePi6R » D; _[Ii7yiazia’riagiabian‘xi7nyianzi]v
J

[na! ny! ,nzl] are estimated vertex normals.

Then we use the processed point clouds to predict inter-object relationships. In this
module, we use pre-trained model of 3DSSG [8], which takes into the point cloud
points sampled to M = 256, of the subject and object of the relationship, along
with a edge descriptor, to predict the relationship class label. An edge descriptor
is a 11-dim vector composed of following values: given the target objects i, j, the

relationship i— > j is to be predicted, and the edge descriptor, composed of:
o Offset between the centroids of two target object 4, j, [x:, yi, z:] — [Ti, Yi, 2i]-

e Difference of standard deviations of point clouds positions on (x,y,z) axes,
[Stdw7i, Stdy)i, Stdz)i] — [Stdwﬂ', Stdy}j, Stdz)j}.

Logarithm ratio of 3D dimensions of the two target objects 4, j,
log([dimy ;, dimy ;, dim ;| /[dimg j, dimy ;, dim. ;]).

Logarithm ratio of the two target objects’ volumes, log(v;/v;).

Logarithm ratio of the two target objects’ lengths (largest dimension),
log(li/1;).

An edge descriptor is the concatenation of all five values mentioned above, which
is then used as the initial value of edge node in GCN.

For more details about the implementation of 3DSSG model, please refer to [g].

3.3 Room Volume Segmentation

This module predicts the room segmentation over free space voxels, generated by
the dense mapper, notated as V = [vy, v, -+ ,v;, -+ ,va], where v; € R3 represents
the center one voxel in space. The predefined voxel size is d = 0.25m, and thus the
distance between two adjacent voxel centers on the grid is also d = 0.25. There are
many choices of methods to segment room space, and here we choose a intuitive and
simple method: 1) Erode the free space voxels 2) Detect and assign IDs to each of the
connected sub-component in the remaining free space voxels 3) Dilate/Propagate
the assigned IDs to neighboring unassigned free space voxels until all free space
voxels are assigned with IDs.

For the erosion, we choose the erosion margin 1.25m, or equivalently, 5 voxel centers,
which is about the size of a door in a common indoor environment. In disconnected
component
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3.4 Room Class Prediction

Humans are good at inference: we can easily predict what the room is used for, from
the furniture, decorations, and other objects in that room. After room segmenta-
tion, we now assign each object to its nearest room node, as shown in figure [3.2b

Then we extract the simplest feature of objects in one room, that is, the number
of occurrences for each object class. We annotate occurrence vectors in a scene
as O = [01,09,--,0,,--- ,0g],0, € RY where R,C represent the number of
rooms in the segmentation and pre-defined number of object classes in the dataset,
respectively. The c-th value in vector O,, written as Of, is the number of objects
of class ¢ occurring in room 7.

With occurrence vectors, a simple random forest classifier is used to predict the
room class label. Due to the lack of annotated scenes for this project, we train
the classifier on a large-scale public indoor scan dataset, ScanNet [20]. ScanNet
contains more than 1500 indoor room scans, with instance-level annotations and
scan labels.



Chapter 4

Evaluation

Since the inter-objects relationships are predicted by the pre-trained 3DSSG [§]
model, we only give the brief evaluation result about the room segmentation and
room classification.

Since many photo-realistic indoor scans dataset, including ScanNet [20] and 3RScan
[21], have their scans already been segmented into single rooms, we annotate one
multi-room indoor scan generated in a photo-realistic simulator, as shown in figure
to evaluate our result.

Figure 4.1: Dense Reconstruction of the Multi-room Scan

Figure gives the qualitative result of the room segmentation and room class
prediction on the introduced multi-room scan. The segmentation at the top is the
annotated ground truth while the segmentation at the bottom is our prediction.
The most obvious difference is that, our prediction cannot recognizes the ”Hall-
way” area. This indicates one possible drawback of our method to predict room
class, that is, our method heavily depends on the semantics of the objects in the
area. Since "Hallway” is a notion that is decided by the shape of the area and its
relative position to connect multiple rooms, our object-based method naturally fails
in this case.

Figure [4.3|shows how 1) number of rooms 2) IOU (intersection over union) 3) room
class prediction accuracy change with respect to running time. For each predicted
segment, 10U is calculated by selecting the maximum IOU score with all ground
truth segments. The IOU score shown in figure is averaged over all predicted
segments. For room class prediction, we match a predicted segment to the ground
truth segment with maximum IOU score, and calculate the prediction accuracy be-
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Figure 4.2: Visualization of the Room Segmentation and Prediction Result
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Conclusion

In this paper, we present a system to incrementally construct hierarchical 3D scene
graph built on top of a dense mapper. This system predicts inter-object relations
from object point clouds, creates room segmentation and predicts room class in the
real time, rather than perform offline data analysis after dense reconstruction is
finished, compared with previous works.

However, this system is composed of basic algorithms and easy aggregation strategy,
and thus has much potential of improvement in many aspects. Here are some
directions that are worth trying to improve the performance of the system:

e For inter-objects relationships prediction, now only 3D point clouds of objects
are used. However, the quality of mesh reconstruction does constrain the
theoretically best possible performance of the present model. Besides, 2D
images provide some extra visual information like texture of objects that could
be useful for relation prediction. For example, objects made of hard material
is more probable than soft objects to ”support to” some other objects. Thus,
it is worth trying to fuse the inter-objects relation predicted from 3D point
clouds and 2D video stream.

e For room segmentation, now only a simple ”Erosion-Dilation” algorithm is
applied. However, there are many heuristics in indoor area segmentation,
such as walls, which are natural borders of different areas in a scene. These
visual heuristics could help to improve the segmentation performance.

e For room prediction, not only the objects in an area that counts, but also the
shape of the area and the semantics of the neighboring areas.

After all, 3D scene graph is a structured middle representation between semantic
space and visual space, and it also enables explicit reasoning process on data struc-
ture that describes the environment. Thus, 3D scene graph provides a seemingly
viable way to answer the question, how to perform high-level planning tasks that
might involve semantics, visual understanding, actions and control. After we can
construct a ”good enough” 3D scene graph, combine it with high-level planning is
naturally the step further.

10
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